MANAGEMENT OF CS I SEMINOMA

Discussion of MRC TE19/EORTC 30982

George J. Bosl MD
Memorial Sloan Kettering Cancer Center

(with Dean Bajorin MD, Robert Motzer MD, Joel Sheinfeld MD, Michael Zelefsky MD, Marisa Kollmeier MD, Sujata Patil PhD, and Darren Feldman MD)
Clinical Stage I Seminoma

What questions are my patients asking?

What should I recommend to the next patient that I see in consultation?
Clinical Stage I Seminoma
What Do We Know?

2. RT and surveillance: Widely accepted standards.
 A. ~4% relapse rate from RT.
 B. 15-20% relapse during surveillance.
3. Carboplatin seems to be a reasonable 3rd option.
 A. Carboplatin relapse = 5.3%. RT=4%.
 B. 2nd 1° GCT reduced from 1.7% to 0.3%
 C. 1° tumors >4 cm have worse RFS.
 D. Dosing matters. AUC<7 has worse RFS.
4. Second malignant neoplasms (SMN) and cardiovascular disease (CVD) known to occur after RT and chemotherapy for GCT.
Clinical Stage I Seminoma

What Questions Should I Ask So I Can Advise My Patient?

1. What does the trial design tell me?
2. How do surveillance, RT, and carboplatin differ?
3. How much should I worry about 2nd 1° GCT?
4. Can I identify “high risk” patients?
5. How do I factor in late toxicity?
What is a “Non-inferiority” Trial?

“Non-inferiority” is not the same as “Equivalence”

<table>
<thead>
<tr>
<th></th>
<th>Superiority</th>
<th>Non-inferiority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Difference exists between RT and Carbo</td>
<td>Carbo not less effective than RT by a specified amount</td>
</tr>
<tr>
<td>α=.05; power=.90</td>
<td>2-sided</td>
<td>1-sided</td>
</tr>
<tr>
<td>Assume difference</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Sample Size</td>
<td>2647</td>
<td>1869</td>
</tr>
</tbody>
</table>

Equivalence

Confirm absence of difference between RT and Carbo

3%

6090

∴ Equivalence has not been demonstrated.
Randomized Trial Design

(Lancet 366: 293, 2005; ASCO 2008)

Non-inferiority design

90% power “to exclude an absolute increase in 2-year relapse rate of > 3.0%” (e.g., 4% vs >7.0%).

Implication of Design among 1000 patients:

1. After RT, a maximum of **40 relapses (events)** expected. With carboplatin, no more than **70 relapses**.

2. Clinically important differences between arms will be **VERY small**, and, therefore, **HARD** to detect.
CURRENT RESULTS (ASCO, 2008):

5 yr RFR: Carboplatin = 94.7%; RT = 96%
Absolute Difference = 1.3%
Relative Difference = 32%
90% CI (-0.7%, 3.5%)
95% confidence that difference is <3.6%.

∴ The trial hasn’t met its endpoint (<3%).
The carboplatin relapse rate could be >7%.

For 1000 patients, these data imply that:

40 events (RT) increases to 53 (Carboplatin),
but could be >70.
Surveillance, RT, and Carboplatin

%Sites of Relapse in CS I Seminoma

<table>
<thead>
<tr>
<th>Relapse Sites</th>
<th>Surveillance#</th>
<th>RT-DL*#</th>
<th>RT-PA*#</th>
<th>1 or 2 Carbo#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retroperitoneum</td>
<td>84%</td>
<td><1%</td>
<td><1%</td>
<td>81%</td>
</tr>
<tr>
<td>“Abd”</td>
<td>---</td>
<td><1%</td>
<td>17%</td>
<td>---</td>
</tr>
<tr>
<td>Pelvis</td>
<td>11%</td>
<td><1%</td>
<td>40%</td>
<td>2%</td>
</tr>
<tr>
<td>Systemic</td>
<td>5%</td>
<td>99%</td>
<td>43%</td>
<td>17%</td>
</tr>
</tbody>
</table>

*DL: dogleg; PA: para-aortic

Issues to Consider:

1. DL port ≈ PA port, but PA means pelvic/“abd” relapses.
2. Carboplatin reverts to surveillance relapse pattern.
3. Carboplatin, RT-PA, Surveillance need long-term CT F/U.

Second Primary GCT

1. 2nd GCT: Carboplatin: 2 (0.3\%) vs. RT 15 (1.7\%)

2. Pre-treatment FSH level correlated with 2nd GCT.

However:

• No data on balance of FSH in each arm.
• 43\% have ↑FSH before any Rx. (Huddart, Br J Cancer 2005)
• ~2\% of patients have 2nd 1o GCT.

Median time to 2nd GCT 6.3 years (range <1 - 18). (Géczi, J Cancer Res Clin Oncol, 2003; Fossa, JNCI, 2005)

Is 2nd GCT reduction sufficient for using carboplatin?

I do not believe that this is sufficient reason. %2nd GCT reduction is = %increase in relapse rate
Can I treat only “high risk” patients?
Seminoma Prognostic Factors

<table>
<thead>
<tr>
<th>Risk Factors*</th>
<th>Group</th>
<th>%Rel</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<4cm, Rete (-)</td>
<td>0 risk factors</td>
<td>12%</td>
<td>176 (39)</td>
</tr>
<tr>
<td>T>4cm, Rete (-)</td>
<td>1 risk factor</td>
<td>16%</td>
<td>182 (40)</td>
</tr>
<tr>
<td>T<4cm, Rete (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T>4cm, Rete (+)</td>
<td>2 risk factors</td>
<td>32%</td>
<td>95 (21)</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>19%</td>
<td>453</td>
</tr>
</tbody>
</table>

(*Warden, JCO 20:4448, 2002)

1. MRC/EORTC: ≥4 cm higher relapse rate.
2. Highest risk group is not very common.
3. Carboplatin and RT overtreat 0-1 risk factor groups.
Should I use a risk-adapted approach?
Seminoma Prognostic Factors

Ideal approach. Similar to CS I NSGCT.

Limitation: Factors not validated prospectively.

- Aparicio (JCO, 2005)
 Nearly all relapses occur in rete (+) group. Supports Rete testis risk factor, not size.

- A consortium effort is needed to identify and validate risk factors.
Future of Risk Identification: Standard Criteria + Molecular Signature?

IGCCCG and molecular signature (Korkola et al, ASCO 2008, Abstract #5084)

1. Identify and validate standard histologic criteria
2. Adapt molecular assay to paraffin tissue.
Does acute toxicity allow a direct choice?

1. Carboplatin causes less ↓WBC and more ↓Plt than RT.
2. Dyspepsia may or may not be different from RT.
3. Return to work >80% by 12 weeks for both RT and carboplatin, but slower recovery after RT.
4. Sperm count recovers by 2 years for RT, but unknown for carboplatin.
5. Paternity ~70% at 15 years after RT, unknown for carboplatin, and 92% with surveillance.
 (Brydøy et al, JNCI 2005)

Acute Toxicity tolerable but surveillance = no toxicity.
Survivorship

What should I tell my patient about late toxicity?

1. **Second Malignant Neoplasms (SMN).**
 After RT and chemo. 50% of SMN outside RT port.

 (van Leeuwen, JCO, 2001; Travis, JNCI 2005; van den Belt-Dusebout, JCO 2007;

 MRC/EORTC Trial

 RT : 0.9% SMN \[\text{\{6.5 years median F/U}\]}
 Carbo : 1.1% SMN \[\text{\{6.5 years median F/U}\]}
 Surveillance: 5.9% SMN \[\text{\{16.5 years median F/U}\]}
 RPLND: 4.3% SMN \[\text{\{16.5 years median F/U}\]}

2. **Cardiovascular Disease (CVD).**
 Particularly after cisplatin-based chemotherapy.

 (Meinardi, JCO, 2000; Huddart, JCO, 2003).
Late Toxicity After GCT Treatment
Competing Risks: 2nd Cancers and Heart Disease

Cumulative risk of 2nd malignant neoplasm (SMN) or cardiovascular disease (CVD) by treatment among NSGCT survivors

1. **RPLND.**
 Both SMN and CVD in the absence of therapy.

2. **Chemo or RT:**
 Risk of SMN or CVD greater than after RPLND.

3. **RT+Chemo**
 Risk greater than either Chemo or RT.

van den Belt-Dusebout, JCO; 25:4370, 2007
Does Carboplatin Cause CVD or SMN?

Cardiovascular Disease:
2. 4% CS I seminoma patients who received carboplatin had fatal AMI. All were older, had H/O of CVD, and an event 7 - 29 months after carboplatin. Related? (Reiter et al, JCO 2001).

Second Malignant Neoplasm (SMN)
3. Carboplatin and RT: ~1% SMN at 6.5 yrs median F/U.

Conclusion
More long term carboplatin experience required.
MANAGEMENT OF CS I SEMINOMA

How do I integrate these data into my practice?

WHAT IS THE GOAL?
Maximum cure rate with least toxicity for the patient population.

HOW TO ACCOMPLISH THIS GOAL?
Focus on the relative risk/benefit ratio for the population.
Treatment Assignment Among 1000 CSI Seminoma Patients

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>RT only</th>
<th>Chemo only</th>
<th>RT+ Chemo</th>
<th>Chemo x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveillance</td>
<td>80%</td>
<td>13%</td>
<td>6%</td>
<td>1%</td>
<td>0</td>
</tr>
<tr>
<td>Surveillance & RT for 2 Risk Factors</td>
<td>68%</td>
<td>27%</td>
<td>4%</td>
<td>1%</td>
<td>0</td>
</tr>
<tr>
<td>RT</td>
<td>0</td>
<td>96%</td>
<td>0</td>
<td>4%</td>
<td>0</td>
</tr>
<tr>
<td>Carbo</td>
<td>0</td>
<td>0</td>
<td>95%</td>
<td>0</td>
<td>5%</td>
</tr>
</tbody>
</table>

Assume: Surveillance Relapse = 20%; 2/3 of Surveillance Relapse get RT; RT Relapse=4%; Carboplatin Relapse=5%; 2 Risk Factor Relapse = 32%; No Relapse after (B)EP.
Conclusions

Your patient needs a recommendation.

1. **Surveillance is an option.**
 - Least treatment for greatest number of patients.
 - With or without risk adapted approach.

2. **RT is an option.**
 - Becoming less preferred due to fear of SMNs.
 - 50% of SMNs occur outside RT portal
 - Dogleg port clears the pelvis—no long-term CT F/U.
 - PA port — Long-term CT F/U. Patient compliance.
Conclusions

Your patient needs a recommendation.

3. **Carboplatin is an option.**
 Carboplatin is not THE standard of care.
 Retroperitoneal and pelvic relapse dominate.
 More chemo exposure.
 Long-term CT F/U. Patient compliance.
 Remember carboplatin is inferior to cisplatin.
 Late toxicity of carboplatin cannot be evaluated.

4. **Each choice has known and unknown risks.**
 To achieve best outcome, the patient needs to understand his options and risk profile.
 Long-term CT followup requires a compliant patient.
Conclusions

MSKCC preferences.

1. Surveillance-based management. Least exposure to RT, Chemo, and especially RT+Chemo.

2. Favor RT-DL when RT is given.

3. A risk adapted approach, as in CS I NSGCT, is likely the best approach. More research needed on CS I prognostic factors.